Poly(ADP-ribose) binding to Chk1 at stalled replication forks is required for S-phase checkpoint activation.
نویسندگان
چکیده
Damaged replication forks activate poly(ADP-ribose) polymerase 1 (PARP1), which catalyses poly(ADP-ribose) (PAR) formation; however, how PARP1 or poly(ADP-ribosyl)ation is involved in the S-phase checkpoint is unknown. Here we show that PAR, supplied by PARP1, interacts with Chk1 via a novel PAR-binding regulatory (PbR) motif in Chk1, independent of ATR and its activity. iPOND studies reveal that Chk1 associates readily with the unperturbed replication fork and that PAR is required for efficient retention of Chk1 and phosphorylated Chk1 at the fork. A PbR mutation, which disrupts PAR binding, but not the interaction with its partners Claspin or BRCA1, impairs Chk1 and the S-phase checkpoint activation, and mirrors Chk1 knockdown-induced hypersensitivity to fork poisoning. We find that long chains, but not short chains, of PAR stimulate Chk1 kinase activity. Collectively, we disclose a previously unrecognized mechanism of the S-phase checkpoint by PAR metabolism that modulates Chk1 activity at the replication fork.
منابع مشابه
Role of replication protein A as sensor in activation of the S-phase checkpoint in Xenopus egg extracts
Uncoupling between DNA polymerases and helicase activities at replication forks, induced by diverse DNA lesions or replication inhibitors, generate long stretches of primed single-stranded DNA that is implicated in activation of the S-phase checkpoint. It is currently unclear whether nucleation of the essential replication factor RPA onto this substrate stimulates the ATR-dependent checkpoint r...
متن کاملPARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination.
If replication forks are perturbed, a multifaceted response including several DNA repair and cell cycle checkpoint pathways is activated to ensure faithful DNA replication. Here, we show that poly(ADP-ribose) polymerase 1 (PARP1) binds to and is activated by stalled replication forks that contain small gaps. PARP1 collaborates with Mre11 to promote replication fork restart after release from re...
متن کاملDNA polymerase κ-dependent DNA synthesis at stalled replication forks is important for CHK1 activation
Formation of primed single-stranded DNA at stalled replication forks triggers activation of the replication checkpoint signalling cascade resulting in the ATR-mediated phosphorylation of the Chk1 protein kinase, thus preventing genomic instability. By using siRNA-mediated depletion in human cells and immunodepletion and reconstitution experiments in Xenopus egg extracts, we report that the Y-fa...
متن کاملContinued primer synthesis at stalled replication forks contributes to checkpoint activation
Stalled replication forks activate and are stabilized by the ATR (ataxia-telangiectasia mutated and Rad3 related)-mediated checkpoint, but ultimately, they must also recover from the arrest. Although primed single-stranded DNA (ssDNA) is sufficient for checkpoint activation, it is still unknown how this signal is generated at a stalled replication fork. Furthermore, it is not clear how recovery...
متن کاملPoly(ADP-ribose) Polymerase Activity Prevents Signaling Pathways for Cell Cycle Arrest following DNA Methylating Agent Exposure
Mouse fibroblasts, deficient in DNA polymerase ß (ß-pol), are hypersensitive to monofunctional DNA methylating agents such as methyl methanesulfonate (MMS). Both wild-type, and in particular repair deficient ßpol null cells, are highly sensitized to the cytotoxic effects of MMS by 4-amino-1,8naphthalimide (4-AN), an inhibitor of poly(ADP-ribose) polymerase (PARP) activity. Experiments with sync...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature communications
دوره 4 شماره
صفحات -
تاریخ انتشار 2013